In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a ‘lazy’ dynamic programming recursion on a predetermined number of probabilistically drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n –1/d+ ), where n is the number of sampled points, d is the dimension of the configuration space, and is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our theoretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT*, especially in high-dimensional configuration spaces and in scenarios where collision-checking is expensive.
from robot theory http://ift.tt/1Gl9f4i
0 comments:
Post a Comment